表格样式
全部例程

SysTick - 系统定时器

W55MH32 其他标签

2025/02/12 更新

SysTick简介

SysTick—系统定时器是属于CM3内核中的一个外设,内嵌在NVIC中。 系统定时器是一个24bit的向下递减的计数器, 计数器每计数一次的时间为1/SYSCLK,一般我们设置系统时钟SYSCLK等于72M。当重装载数值寄存器的值递减到0的时候,系统定时器就产生一次中断,以此循环往复。

因为SysTick是属于CM3内核的外设,所以所有基于CM3内核的单片机都具有这个系统定时器,使得软件在CM3单片机中可以很容易的移植。 系统定时器一般用于操作系统,用于产生时基,维持操作系统的心跳。

SysTick寄存器介绍

SysTick—系统定时器有4个寄存器,简要介绍如下。在使用SysTick产生定时的时候,只需要配置前三个寄存器,最后一个校准寄存器不需要使用。

寄存器名称 寄存器描述
CTRL SysTick 控制及状态寄存器
LOAD SysTick 重装载数值寄存器
VAL SysTick 当前数值寄存器
CALIB SysTick 校准数值寄存器
位段 名称 类型 复位值 描述
16 COUNTFLAG R/W 0 如果在上次读取本寄存器后,SysTick 已经计到了 0,则该位为 1。
2 CLKSOURCE R/W 0 时钟源选择位,0=AHB/8,1 = 处理器时钟 AHB
1 TICKINT R/W 0 1=SysTick 倒数计数到 0 时产生 SysTick 异常请求,0 = 数到 0 时无动作。也可通过读取 COUNTFLAG 标志位确定计数器是否递减到 0
0 ENABLE R/W 0 SysTick 定时器的使能位
位段 名称 类型 复位值 描述
23:0 RELOAD R/W 0 当倒数计数至零时,将被重装载的值
位段 名称 类型 复位值 描述
23:0 CURRENT R/W 0 读取时返回当前倒计数的值,写它则使之清零,同时还会清除在 SysTick 控制及状态寄存器中的 COUNTFLAG 标志
位段 名称 类型 复位值 描述
31 NOREF R 0 NOREF flag. Reads as zero. Indicates that a separate reference clock is provided. The frequency of this clock is HCLK/8
30 SKEW R 1 Reads as one. Calibration value for the 1 ms inexact timing is not known because TENMS is not known. This can affect the suitability of SysTick as a software real time clock
23:0 TENMS R 0 Indicates the calibration value when the SysTick counter runs on HCLK max/8 as external clock. The value is product dependent, refer to the Product Reference Manual, SysTick Calibration Value section. When HCLK is at max frequency, SysTick period is 1ms. If calibration info unknown, calculate from processor/external clock frequency.

系统定时器的校准数值寄存器在定时实验中不需要用到。有关各个位的描述这里引用手册里面的英文版本, 比较晦涩难懂, 暂时不知道这个寄存器用来干什么。有研究过的朋友可以交流,起个抛砖引玉的作用。

SysTick定时介绍

代码分析

SysTick 属于内核的外设,有关的寄存器定义和库函数都在内核相关的库文件core_cm3.h中。

代码清单:SysTick-1SysTick配置库函数

__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
    // 不可能的重装载值,超出范围
    if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) {
        return (1UL);
    }

    // 设置重装载寄存器
    SysTick->LOAD  = (uint32_t)(ticks - 1UL);

    // 设置中断优先级
    NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL);

    // 设置当前数值寄存器
    SysTick->VAL   = 0UL;

    // 设置系统定时器的时钟源为AHBCLK=72M
    // 使能系统定时器中断
    // 使能定时器
    SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk |
                    SysTick_CTRL_TICKINT_Msk   |
                    SysTick_CTRL_ENABLE_Msk;
    return (0UL);
}

用固件库编程的时候我们只需要调用库函数SysTick_Config()即可,形参ticks用来设置重装载寄存器的值, 最大不能超过重装载寄存器的值224,当重装载寄存器的值递减到0的时候产生中断,然后重装载寄存器的值又重新装载往下递减计数, 以此循环往复。紧随其后设置好中断优先级,最后配置系统定时器的时钟等于AHBCLK=72M,使能定时器和定时器中断,这样系统定时器就配置好了,一个库函数搞定。

SysTick_Config()库函数主要配置了SysTick中的三个寄存器:LOAD、VAL和CTRL,有关具体的部分看代码注释即可。

配置SysTick中断优先级

在SysTick_Config()库函数还调用了固件库函数NVIC_SetPriority()来配置系统定时器的中断优先级,该库函数也在core_m3.h中定义,原型如下:


__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
    if ((int32_t)IRQn < 0) {
        SCB->SHP[(((uint32_t)(int32_t)IRQn) & 0xFUL)-4UL] =
        (uint8_t)((priority << (8 - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
    } else {
        NVIC->IP[((uint32_t)(int32_t)IRQn)] =
        (uint8_t)((priority << (8 - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
    }
}

函数首先先判断形参IRQn的大小,如果是小于0,则表示这个是系统异常,系统异常的优先级由内核外设SCB的寄存器SHPRx控制, 如果大于0则是外部中断,外部中断的优先级由内核外设NVIC中的IPx寄存器控制。

因为SysTick属于内核外设,跟普通外设的中断优先级有些区别,并没有抢占优先级和子优先级的说法。在W55MH32中, 内核外设的中断优先级由内核SCB这个外设的寄存器:SHPRx(x=1.2.3)来配置。有关SHPRx寄存器的详细描述可参考《Cortex-M3内核编程手册》4.4.8章节。 下面我们简单介绍下这个寄存器。

SPRH1-SPRH3是一个32位的寄存器,但是只能通过字节访问,每8个字段控制着一个内核外设的中断优先级的配置。在W55MH32中, 只有位7:4这高四位有效,低四位没有用到,所以内核外设的中断优先级可编程为:0~15,只有16个可编程优先级,数值越小,优先级越高。 如果软件优先级配置相同,那就根据他们在中断向量表里面的位置编号来决定优先级大小,编号越小,优先级越高。

异常 字段 寄存器描述
Memory management fault PRL_4 SHPR1
Bus fault PRL_5 SHPR1
Usage fault PRL_6 SHPR1
SVCall PRL_11 SHPR2
PendSV PRL_14 SHPR3
SysTick PRL_15 SHPR3

如果要修改内核外设的优先级,只需要修改下面三个寄存器对应的某个字段即可:

在系统定时器中,配置优先级为(1UL << __NVIC_PRIO_BITS) - 1UL), 其中宏__NVIC_PRIO_BITS为4,那计算结果就等于15, 可以看出系统定时器此时设置的优先级在内核外设中是最低的,如果要修改优先级则修改这个值即可,范围为:0~15。


// 设置系统定时器中断优先级
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL);

但是,问题来了,刚刚我们只是学习了内核的外设的优先级配置。如果我同时使用了systick和片上外设呢?而且片上外设也刚好需要使用中断, 那systick的中断优先级跟外设的中断优先级怎么设置?会不会因为systick是内核里面的外设,所以它的中断优先级就一定比内核之外的外设的优先级高?

从《W55MH32中断应用概览》这章我们知道,外设在设置中断优先级的时候,首先要分组,然后设置抢占优先级和子优先级。 而systick这类内核的外设在配置的时候,只需要配置一个寄存器即可,取值范围为0~15。既然配置方法不同,那如何区分两者的优先级?下面举例说明。

比如配置一个外设的中断优先级分组为2,抢占优先级为1,子优先级也为1,systick的优先级为固件库默认配置的15。 当我们比较内核外设和片上外设的中断优先级的时候,我们只需要抓住NVIC的中断优先级分组不仅对片上外设有效,同样对内核的外设也有效。 我们把systick的优先级15转换成二进制值就是1111(0b),又因为NVIC的优先级分组2,那么前两位的11(0b)就是3,后两位的11(0b)也是3。 无论从抢占还是子优先级都比我们设定的外设的优先级低。如果当两个的软件优先级都配置成一样,那么就比较他们在中断向量表中的硬件编号,编号越小,优先级越高。

代码清单:SysTick-2 SysTick初始化函数

/**
* @brief  启动系统滴答定时器 SysTick
* @param  无
* @retval 无
*/
void SysTick_Init(void)
{
    /* SystemFrequency / 1000    1ms中断一次
    * SystemFrequency / 100000  10us中断一次
    * SystemFrequency / 1000000 1us中断一次
    */
    if (SysTick_Config(SystemCoreClock / 100000)) {
        /* Capture error */
        while (1);
    }
}

SysTick初始化函数由用户编写,里面调用了SysTick_Config()这个固件库函数, 通过设置该固件库函数的形参,就决定了系统定时器经过多少时间就产生一次中断。

SysTick中断时间的计算

SysTick定时器的计数器是向下递减计数的,计数一次的时间TDEC=1/CLKAHB, 当重装载寄存器中的值VALUELOAD减到0的时候,产生中断, 可知中断一次的时间TINT=VALUELOAD * TDEC= VALUELOAD/CLKAHB, 其中CLKAHB =72MHZ。如果设置VALUELOAD为72, 那中断一次的时间TINT=72/72M=1us。 不过1us的中断没啥意义,整个程序的重心都花在进出中断上了,根本没有时间处理其他的任务。


SysTick_Config(SystemCoreClock / 100000)

SysTick_Config()的形我们配置为SystemCoreClock / 100000=72M/100000=720, 从刚刚分析我们知道这个形参的值最终是写到重装载寄存器LOAD中的, 从而可知我们现在把SysTick定时器中断一次的时间TINT=720/72M=10us。

SysTick定时时间的计算

当设置好中断时间TINT后,我们可以设置一个变量t,用来记录进入中断的次数, 那么变量t乘以中断的时间TINT就可以计算出需要定时的时间。

SysTick定时函数

当设置好中断时间TINT后,我们可以设置一个变量t,用来记录进入中断的次数, 那么变量t乘以中断的时间TINT就可以计算出需要定时的时间。

SysTick定时函数

现在我们定义一个微秒级别的延时函数,形参为nTime,当用这个形参乘以中断时间TINT就得出我们需要的延时时间, 其中TINT我们已经设置好为10us。关于这个函数的具体调用看注释即可。


/**
* @brief   us延时程序,10us为一个单位
* @param
*   @arg nTime: Delay_us( 1 ) 则实现的延时为 1 * 10us = 10us
* @retval  无
*/
void Delay_us(__IO u32 nTime)
{
    TimingDelay = nTime;

    while (TimingDelay != 0);
}

函数Delay_us()中我们等待TimingDelay为0,当TimingDelay为0的时候表示延时时间到。变量TimingDelay在中断函数中递减, 即SysTick每进一次中断即10us的时间TimingDelay递减一次。

SysTick中断服务函数


void SysTick_Handler(void)
{
    TimingDelay_Decrement();
}

中断复位函数调用了另外一个函数TimingDelay_Decrement(),原型如下:


/**
* @brief  获取节拍程序
* @param  无
* @retval 无
* @attention  在 SysTick 中断函数 SysTick_Handler()调用
*/
void TimingDelay_Decrement(void)
{
    if (TimingDelay != 0x00) {
        TimingDelay--;
    }
}

TimingDelay的值等于延时函数中传进去的nTime的值,比如nTime=100000,则延时的时间等于100000*10us=1s。

我们知道,systick的counter从reload值往下递减到0的时候,CTRL寄存器的位16:countflag会置1,且读取该位的值可清0, 所有我们可以使用软件查询的方法来实现延时。具体代码见 代码清单:SysTick-3 和 代码清单:SysTick-4 ,我敢肯定这样的写法, 初学者肯定会更喜欢,因为它直接,套路浅。

代码清单:SysTick-3 systick 微秒级延时

void SysTick_Delay_Us( __IO uint32_t us)
{
    uint32_t i;
    SysTick_Config(SystemCoreClock/1000000);

    for (i=0; iCTRL)&(1<<16)) );
    }
    // 关闭SysTick定时器
    SysTick->CTRL &=~SysTick_CTRL_ENABLE_Msk;
}

代码清单:SysTick-4 systick 毫秒级延时

void SysTick_Delay_Ms( __IO uint32_t ms)
{
    uint32_t i;
    SysTick_Config(SystemCoreClock/1000);

    for (i=0; iCTRL)&(1<<16)) );
    }
    // 关闭SysTick定时器
    SysTick->CTRL &=~ SysTick_CTRL_ENABLE_Msk;
}

在这两个微秒和毫秒级别的延时函数中,我们还是调用了SysTick_Config这个固件库函数,有关这个函数的说明具体见 代码清单:SysTick-5 。 配套代码注释理解即可。其中SystemCoreClock是一个宏,大小为72000000,如果不想使用这个宏,也可以直接改成数字。

代码清单:SysTick-5 systick 配置函数

// 这个 固件库函数 在 core_cm3.h中
static __INLINE uint32_t SysTick_Config(uint32_t ticks)
{
    // reload 寄存器为24bit,最大值为2^24
    if (ticks > SysTick_LOAD_RELOAD_Msk)  return (1);

    // 配置 reload 寄存器的初始值
    SysTick->LOAD  = (ticks & SysTick_LOAD_RELOAD_Msk) - 1;

    // 配置中断优先级为 1<<4 -1 = 15,优先级为最低
    NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);

    // 配置 counter 计数器的值
    SysTick->VAL   = 0;

    // 配置systick 的时钟为 72M
    // 使能中断
    // 使能systick
    SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk |
                    SysTick_CTRL_TICKINT_Msk   |
                    SysTick_CTRL_ENABLE_Msk;
    return (0);
}

下载开发套件

我们提供完整的工程文件以及配套开发板,方便你随时测试,快速完成产品开发:

开发环境: Keil MDK5 配套开发板